Can one **identify** two unital JB*-algebras by the metric spaces determined by their unitary sets?

A Hatori-Molnár type theorem for unital JB*-algebras

María Cueto-Avellaneda University of Granada

Antonio M. Peralta University of Granada

JB*-algebras

M complex Jordan Banach algebra * : $M \rightarrow M$ involution $||U_a(a^*)|| = ||a||^3, \forall a \in M$

where $U_a(x) = 2(a \circ x) \circ a - a^2 \circ x$, $(x \in M)$

Theorem

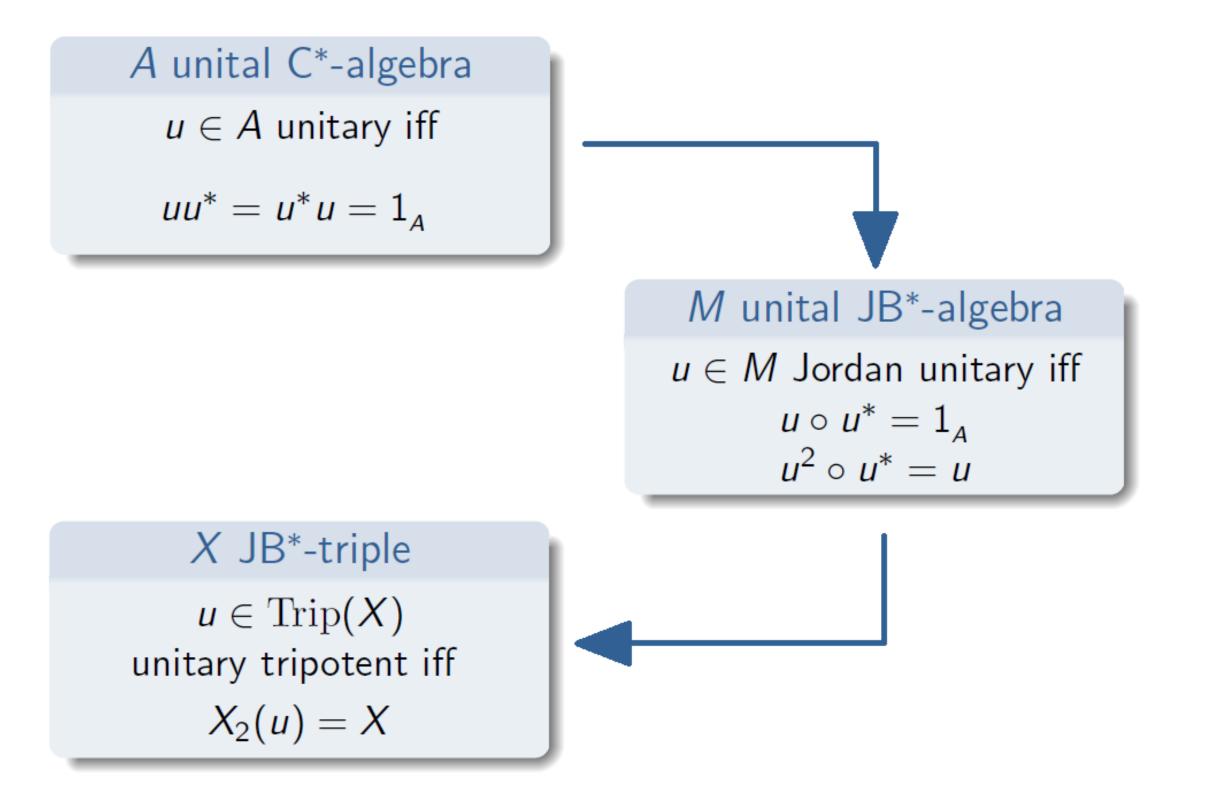
Let *M* and *N* be two unital JB*-algebras, and let $\mathcal{U}(M)$ and $\mathcal{U}(N)$ denote the sets of all unitaries in *M* and *N*, respectively. Suppose $\Delta : \mathcal{U}(M) \to \mathcal{U}(N)$ is a surjective isometry, and that one of the following holds:

- $\|\mathbf{1}_{N} \Delta(\mathbf{1}_{M})\| < 2;$
- $\exists \omega_0 \in \mathcal{U}(M)$ such that $U_{\omega_0}(\Delta(\mathbf{1}_M)) = \mathbf{1}_N$.

Then there exists a unitary ω in N satisfying

 $\Delta(e^{iM_{sa}}) = U_{\omega^*}(e^{iN_{sa}}).$

Furthermore, there exist a Jordan *-isomorphism $\Phi : M \rightarrow N$, and a central



projection *p* in *N* such that

 $\Delta(e^{ih}) = U_{\omega^*}\left(p \circ \Phi(e^{ih})\right) + U_{\omega^*}\left((\mathbf{1}_{\scriptscriptstyle N} - p) \circ \Phi(e^{ih})^*\right), \quad \forall h \in M_{\scriptscriptstyle Sa}.$

Consequently, the restriction $\Delta|_{e^{iM_{sa}}}$ admits a (unique) extension to a surjective real linear isometry from *M* onto *N*.

Corollary

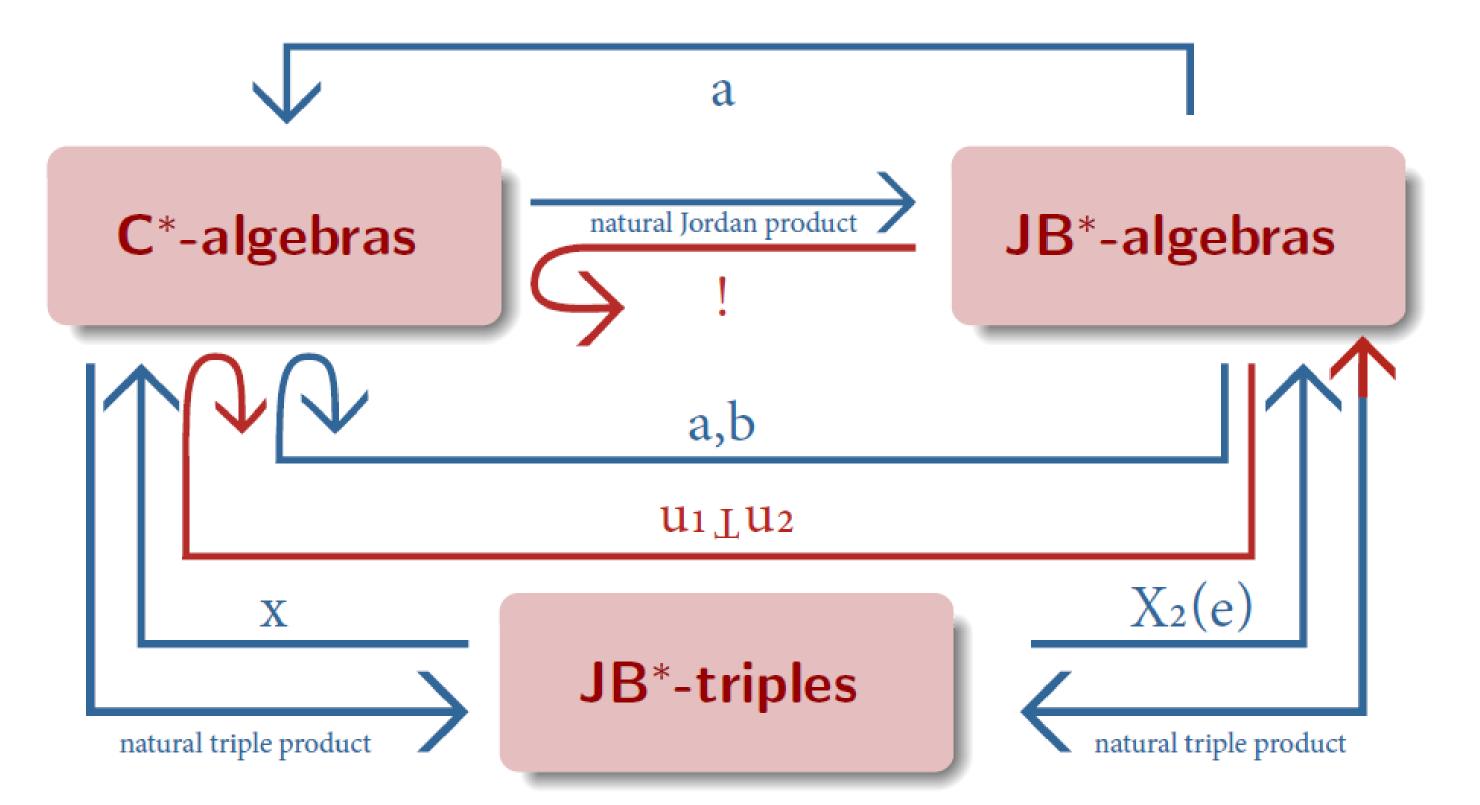
The following statements are equivalent for any M and N unital JB*-algebras: (a) M and N are isometrically isomorphic as (complex) Banach spaces; (b) M and N are isometrically isomorphic as real Banach spaces; (c) There exists a surjective isometry $\Delta : \mathcal{U}(M) \to \mathcal{U}(N)$.

Unitary Tingley's problem for JBW*-algebras

Let $\Delta : \mathcal{U}(M) \to \mathcal{U}(N)$ be a surjective isometry, where M and N are two JBW*-algebras. Then there exist a unitary ω in N, a central projection $p \in N$, and a Jordan *-isomorphism $\Phi : M \to N$ such that

Jordan-Stone's one-parameter theorem

Let *M* be a unital JB*-algebra. Suppose $\{u(t) : t \in \mathbb{R}\}$ is a family in $\mathcal{U}(M)$ satisfying $u(0) = \mathbf{1}$, and $U_{u(t)}(u(s)) = u(2t + s)$, for all $t, s \in \mathbb{R}$. We also assume that the mapping $t \mapsto u(t)$ is continuous. Then there exists $h \in M_{sa}$ such that $u(t) = e^{ith}$ for all $t \in \mathbb{R}$.



$$\Delta(u) = U_{\omega^*}(p \circ \Phi(u)) + U_{\omega^*}((\mathbf{1}_N - p) \circ \Phi(u)^*), \quad \forall u \in \mathcal{U}(M).$$

Consequently, Δ admits a (unique) extension to a surjective real linear isometry from *M* onto *N*.

